4.7 Article

Photochemical production of aerosols from real plant emissions

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 9, Issue 13, Pages 4387-4406

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-9-4387-2009

Keywords

-

Funding

  1. European Commission [036833-2]
  2. Helen and Martin Kimmel Award
  3. Israel Science Foundation [196/08]

Ask authors/readers for more resources

Emission of biogenic volatile organic compounds (VOC) which on oxidation form secondary organic aerosols (SOA) can couple the vegetation with the atmosphere and climate. Particle formation from tree emissions was investigated in a new setup: a plant chamber coupled to a reaction chamber for oxidizing the plant emissions and for forming SOA. Emissions from the boreal tree species birch, pine, and spruce were studied. In addition, alpha-pinene was used as reference compound. Under the employed experimental conditions, OH radicals were essential for inducing new particle formation, although O-3 (< 80 ppb) was always present and a fraction of the monoterpenes and the sesquiterpenes reacted with ozone before OH was generated. Formation rates of 3 nm particles were linearly related to the VOC carbon mixing ratios, as were the maximum observed volume and the condensational growth rates. For all trees, the threshold of new particle formation was lower than for alpha-pinene. It was lowest for birch which emitted the largest fraction of oxygenated VOC (OVOC), suggesting that OVOC may play a role in the nucleation process. Incremental mass yields were 5% for pine, spruce and alpha-pinene, and 10% for birch. alpha-Pinene was a good model compound to describe the yield and the growth of SOA particles from coniferous emissions. The mass fractional yields agreed well with observations for boreal forests. Despite the somewhat enhanced VOC and OH concentrations our results may be up-scaled to eco-system level. Using the mass fractional yields observed for the tree emissions and weighting them with the abundance of the respective trees in boreal forests SOA mass concentration calculations agree within 6% with field observations. For a future VOC increase of 50% we predict a particle mass increase due to SOA of 19% assuming today's mass contribution of pre-existing aerosol and oxidant levels.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available