4.4 Article

Oral green tea catechin metabolites are incorporated into human skin and protect against UV radiation-induced cutaneous inflammation in association with reduced production of pro-inflammatory eicosanoid 12-hydroxyeicosatetraenoic acid

Journal

BRITISH JOURNAL OF NUTRITION
Volume 110, Issue 5, Pages 891-900

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0007114512006071

Keywords

Green tea catechins; Bioavailability; Skin; 12-Hydroxyeicosatetraenoic acid

Funding

  1. Biotechnology and Biological Sciences Research Council Diet and Health Research Industry Club [BB/G005575/1]
  2. Biotechnology and Biological Sciences Research Council [BB/G005559/1, BB/G005540/1, BB/G005575/1] Funding Source: researchfish
  3. BBSRC [BB/G005559/1, BB/G005575/1, BB/G005540/1] Funding Source: UKRI

Ask authors/readers for more resources

Green tea catechins (GTC) reduce UV radiation (UVR)-induced inflammation in experimental models, but human studies are scarce and their cutaneous bioavailability and mechanism of photoprotection are unknown. We aimed to examine oral GTC cutaneous uptake, ability to protect human skin against erythema induced by a UVR dose range and impact on potent cyclo-oxygenase- and lipoxygenase-produced mediators of UVR inflammation, PGE(2) and 12-hydroxyeicosatetraenoic acid (12-HETE), respectively. In an open oral intervention study, sixteen healthy human subjects (phototype I/II) were given low-dose GTC (540 mg) with vitamin C (50 mg) daily for 12 weeks. Pre- and post-supplementation, the buttock skin was exposed to UVR and the resultant erythema quantified. Skin blister fluid and biopsies were taken from the unexposed and the UVR-exposed skin 24 h after a pro-inflammatory UVR challenge (three minimal erythema doses). Urine, skin tissue and fluid were analysed for catechin content and skin fluid for PGE(2) and 12-HETE by liquid chromatography coupled to tandem MS. A total of fourteen completing subjects were supplement compliant (twelve female, median 42.5 years, range 29-59 years). Benzoic acid levels were increased in skin fluid post-supplementation (P = 0.03), and methylated gallic acid and several intact catechins and hydroxyphenyl-valerolactones were detected in the skin tissue and fluid. AUC analysis for UVR erythema revealed reduced response post-GTC (P = 0.037). Pre-supplementation, PGE(2) and 12-HETE were UVR induced (P = 0.003, 0.0001). After GTC, UVR-induced 12-HETE reduced from mean 64 (SD 42) to 41 (SD 32) pg/mu l (P = 0.01), while PGE(2) was unaltered. Thus, GTC intake results in the incorporation of catechin metabolites into human skin associated with abrogated UVR-induced 12-HETE; this may contribute to protection against sunburn inflammation and potentially longer-term UVR-mediated damage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available