4.8 Article

Nitrogen-Doped Carbon Nanotubes Supported by Macroporous Carbon as an Efficient Enzymatic Biosensing Platform for Glucose

Journal

ANALYTICAL CHEMISTRY
Volume 88, Issue 2, Pages 1371-1377

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.5b03938

Keywords

-

Funding

  1. National Natural Science Foundation of China [21165010, 21465014, 21465015]
  2. Natural Science Foundation of Jiangxi Province [20142BAB203101]
  3. Young Scientist Foundation of Jiangxi Province [20122BCB23011]
  4. Ministry of Education by the Specialized Research Fund for the Doctoral Program of Higher Education [20133604110002]
  5. Ground Plan of Science and Technology Projects of Jiangxi Educational Committee [KJLD14023]

Ask authors/readers for more resources

Effective immobilization of enzymes/proteins on an electrode surface is very essential for biosensor development, but it still remains challenging because enzymes/proteins tend to form close-packed structures on the electrode surface. In this work, nitrogen-doped carbon nanotubes (NCNTs) supported by three-dimensional Kenaf Stem-derived porous carbon (3D-KSC) (denoted as 3D-KSC/NCNTs) nanocomposites were constructed as the supporting matrix to load glucose oxidase (GOD) for preparing integrated glucose biosensors. These NCNTs are vertically arrayed on the channel walls of the 3D-KSC via the chemical vapor deposition method, which could noticeably increase the effective surface area, mechanical stability, and active sites (originating from the doped nitrogen) of the nanocomposites. The integrated glucose biosensor exhibits some advantages over the traditional GOD electrodes in terms of the capability to promote the direct electron transfer of GOD, enhance the mechanical stability of the biosensor attributed to the strong interaction between NCNTs and GOD, and enlarge the specific surface area to efficiently load a large number of GODs. The as-prepared biosensor shows a good performance toward both oxygen reduction and glucose biosensing. This study essentially offers a novel approach for the development of biosensors with excellent analytical properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available