4.8 Article

Label-Free and Enzyme-Free Homogeneous Electrochemical Biosensing Strategy Based on Hybridization Chain Reaction: A Facile, Sensitive, and Highly Specific MicroRNA Assay

Journal

ANALYTICAL CHEMISTRY
Volume 87, Issue 22, Pages 11368-11374

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.5b02790

Keywords

-

Funding

  1. National Natural Science Foundation of China [21175076, 21375072, 21445002]
  2. Open Foundation of State Key Laboratory of Electroanalytical Chemistry [SKLEAC201402]
  3. Research Foundation for Distinguished Scholars of Qingdao Agricultural University [663-1113311, 663-1113320]
  4. Special Foundation for Taishan Scholar of Shandong Province

Ask authors/readers for more resources

Homogenous electrochemical biosensing strategies have attracted substantial attention, because of their advantages of being immobilization-free and having rapid response and improved recognition efficiency, compared to heterogeneous biosensors; however, the high cost of labeling and the strict reaction conditions of tool enzymes associated with current homogeneous electrochemical methods limit their potential applications. To address these issues, herein we reported, for the first time, a simple label-free and enzyme-free homogeneous electrochemical strategy based on hybridization chain reaction (HCR) for sensitive and highly specific detection of microRNA (iniRNA). The target miRNA triggers the HCR of two species of metastable DNA hairpin probes, resulting in the formation of multiple G-quadruplex-incorporated long duplex DNA chains. Thus, with the electrochemical indicator Methylene Blue (MB) selectively intercalated into the duplex DNA chain and the multiple G-quadruplexes, a significant electrochemical signal drop is observed, which is dependent on the concentration of the target miRNA. Thus, using this signal-off mode, a simple, label-free and enzyme-free homogeneous electrochemical strategy for sensitive miRNA assay is readily realized. This strategy also exhibits excellent selectivity to distinguish even single-base mismatched miRNA. Furthermore, this method also exhibits additional advantages of simplicity and low cost, since both expensive labeling and sophisticated probe immobilization processes are avoided. Therefore, the as-proposed label-free and enzyme-free homogeneous electrochemical strategy may become an alternative method for simple, sensitive, and selective miRNA detection, and it has great potential to be applied in miRNA-related clinical diagnostics and biochemical research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available