4.8 Article

TiO2 Nanoparticles Functionalized Monolithic Capillary Microextraction Online Coupled with Inductively Coupled Plasma Mass Spectrometry for the Analysis of Gd Ion and Gd-Based Contrast Agents in Human Urine

Journal

ANALYTICAL CHEMISTRY
Volume 87, Issue 17, Pages 8949-8956

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.5b02111

Keywords

-

Funding

  1. National Nature Science Foundation of China [21205090, 21175102]
  2. Science Fund for Creative Research Groups of NSFC [20921062]
  3. National Basic Research Program of China (973 Program) [2013CB933900]
  4. Fundamental Research Funds for the Central Universities [2015203020209]

Ask authors/readers for more resources

In this work, a novel method of TiO2 nanoparticles (NPs) functionalized monolithic capillary microextraction (CME) online coupling with inductively coupled plasma mass spectrometry (ICPMS) was developed for the sequential determination of Gd3+ and Gd-based contrast agents in human urine samples. The monolithic capillary was prepared by embedding anatase TiO2 NPs in the poly(methacrylic acid-ethylene glycol dimethacrylate) (MAA-EDMA) framework. The Gd3+ and Gd-based contrast agents (such as gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) and Gd-DTPA-bismethylamide (Gd-DTPA-BMA)) display different adsorption behaviors on the prepared monolithic capillary which possesses the adsorption properties. of both anatase TiO2 NPs and poly(MAA-EDMA) monolith. Under the optimized conditions, the limits of detection (LODs) were found to be 3.6, 3.2, and 4.5 ng L-1 for Gd3+, Gd-DTPA, and Gd-DTPA-BMA, respectively, which are the lowest up to date. The enrichment factor was 25-fold with the sample throughput of 5 h(-1). The proposed method was validated by the analysis of Gd3+ and Gd-DTPA in the healthy human urine samples as well as Gd3+ and Gd-DTPA-BMA in patient urine samples. It was found that only a small amount of the free Gd3+ was released from Gd-DTPA-BMA, and accurate results could be obtained since no oxidation/reduction or subtraction is involved in this method. This method is simple, sensitive, and rapid and provides a very attractive nonchromatography strategy for the speciation of Gd3+ and Gd-based contrast agents in urine samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available