4.8 Article

Carbon Quantum Dots-Based Recyclable Real-Time Fluorescence Assay for Alkaline Phosphatase with Adenosine Triphosphate as Substrate

Journal

ANALYTICAL CHEMISTRY
Volume 87, Issue 5, Pages 2966-2973

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac504519b

Keywords

-

Funding

  1. National Natural Science Foundation of China [21405142, 21005073, 21275131]
  2. Zhejiang Province [LY13B050001, LQ13B050002, ZJHX201403]

Ask authors/readers for more resources

A convenient, reliable, and highly sensitive real-time assay for alkaline phosphatase (ALP) activity in the continuous and recyclable way is established on the basis of aggregation and disaggregation of carbon quantum dots (CQDs) through the competitive assay approach. CQDs and adenosine triphosphate (ATP) were used as the fluorescent indicator and substrate for ALP activity assessment, respectively. Richness of carboxyl groups on the surface of CQDs enables their severe aggregation triggered by cerium ions, which results in effective fluorescence quenching. Under the catalytic hydrolysis of ALP, ATP can be rapidly transformed to phosphate ions. Stronger affinity of phosphate ions to cerium ions than carboxyl groups is taken advantage of to achieve fluorescence recovery induced by redispersion of CQDs in the presence of ALP and ATP. Quantitative evaluation of ALP activity in a broad range from 4.6 to 383.3 U/L with the detection limit of 1.4 U/L can be realized in this way, which endows the assay with high enough sensitivity for practical detection in human serum. The assay can be used in a recyclable way for more than three times since the generated product CePO4 as a precipitate can be easily removed from the standard assay system. This strategy broadens the sensing application of fluorescent CQDs with excellent biocompatibility and provides an example based on disaggregation in optical probe development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available