4.7 Article

The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California

Journal

HYDROLOGY AND EARTH SYSTEM SCIENCES
Volume 14, Issue 6, Pages 1125-1138

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/hess-14-1125-2010

Keywords

-

Funding

  1. State of California through the California Energy Commission Public Interest Energy Research (PIER) Program
  2. United States Department of Energy
  3. CALFED

Ask authors/readers for more resources

Three statistical downscaling methods were applied to NCEP/NCAR reanalysis (used as a surrogate for the best possible general circulation model), and the downscaled meteorology was used to drive a hydrologic model over California. The historic record was divided into an 'observed' period of 1950-1976 to provide the basis for downscaling, and a 'projected' period of 1977-1999 for assessing skill. The downscaling methods included a bias-correction/spatial downscaling method (BCSD), which relies solely on monthly large scale meteorology and resamples the historical record to obtain daily sequences, a constructed analogues approach (CA), which uses daily large-scale anomalies, and a hybrid method (BCCA) using a quantile-mapping bias correction on the large-scale data prior to the CA approach. At 11 sites we compared three simulated daily flow statistics: streamflow timing, 3-day peak flow, and 7-day low flow. While all downscaling methods produced reasonable streamflow statistics at most locations, the BCCA method consistently outperformed the other methods, capturing the daily large-scale skill and translating it to simulated streamflows that more skillfully reproduced observationally-driven streamflows.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available