4.5 Article

Maraviroc:: in vitro assessment of drug-drug interaction potential

Journal

BRITISH JOURNAL OF CLINICAL PHARMACOLOGY
Volume 66, Issue 4, Pages 498-507

Publisher

WILEY
DOI: 10.1111/j.1365-2125.2008.03198.x

Keywords

drug-drug interactions; in vitro metabolism; maraviroc; Simcyp (TM)

Ask authors/readers for more resources

AIMS To characterize the cytochrome P450 enzyme(s) responsible for the N-dealkylation of maraviroc in vitro, and predict the extent of clinical drug-drug interactions (DDIs). METHODS Human liver and recombinant CYP microsomes were used to identify the CYP enzyme responsible for maraviroc N-dealkylation. Studies comprised enzyme kinetics and evaluation of the effects of specific CYP inhibitors. In vitro data were then used as inputs for simulation of DDIs with ketoconazole, ritonavir, saquinavir and atazanvir, using the Simcyp (TM) population-based absorption, distribution, metabolism and elimination (ADME) simulator. Study designs for simulations mirrored those actually used in the clinic. RESULTS Maraviroc was metabolized to its N-dealkylated product via a single CYP enzyme characterized by a K-m of 21 mu M and V-max of 0.45 pmol pmol(-1) min(-1) in human liver microsomes and was inhibited by ketoconazole (CYP3A4 inhibitor). In a panel of recombinant CYP enzymes, CYP3A4 was identified as the major CYP responsible for maraviroc metabolism. Using recombinant CYP3A4, N-dealkylation was characterized by a K-m of 13 mu M and a V-max of 3 pmol pmol(-1) CYP min(-1). Simulations therefore focused on the effect of CYP3A4 inhibitors on maraviroc pharmacokinetics. The simulated median AUC ratios were in good agreement with observed clinical changes (within twofold in all cases), although, in general, there was a trend for overprediction in the magnitude of the DDI. CONCLUSION Maraviroc is a substrate for CYP3A4, and exposure will therefore be modulated by CYP3A4 inhibitors. Simcyp (TM) has successfully simulated the extent of clinical interactions with CYP3A4 inhibitors, further validating this software as a good predictor of CYP-based DDIs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available