4.7 Article

Senescent cancer-associated fibroblasts secrete active MMP-2 that promotes keratinocyte dis-cohesion and invasion

Journal

BRITISH JOURNAL OF CANCER
Volume 111, Issue 6, Pages 1230-1237

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/bjc.2014.438

Keywords

cancer-associated fibroblasts; oral squamous cell carcinoma; matrix metalloproteinases; invasion; cell-cell adhesion; TGF-beta; head and neck cancer

Categories

Funding

  1. University of Jordan

Ask authors/readers for more resources

Background: Previous studies have demonstrated that senescent cancer-associated fibroblasts (CAFs) derived from genetically unstable oral squamous cell carcinomas (GU-OSCC), unlike non-senescent CAFs from genetically stable carcinomas (GS-OSCC), promoted keratinocyte invasion in vitro in a paracrine manner. The mechanism by which this occurs is unclear. Methods: Previous work to characterise the senescent-associated secretory phenotype (SASP) has used antibody arrays, technology that is limited by the availability of suitable antibodies. To extend this work in an unbiased manner, we used 2D gel electrophoresis and mass spectroscopy for protein identification. Matrix metalloproteinases (MMPs) were investigated by gelatin zymography and western blotting. Neutralising antibodies were used to block key molecules in the functional assays of keratinocyte adhesion and invasion. Results: Among a variety of proteins that were differentially expressed between CAFs from GU-OSCC and GS-OSCC, MMP-2 was a major constituent of senescent CAF-CM derived from GU-OSCC. The presence of active MMP-2 was confirmed by gelatine zymography. MMP-2 derived from senescent CAF-CM induced keratinocyte dis-cohesion and epithelial invasion into collagen gels in a TGF-beta-dependent manner. Conclusions: Senescent CAFs from GU-OSCC promote a more aggressive oral cancer phenotype by production of active MMP-2, disruption of epithelial adhesion and induction of keratinocyte invasion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available