4.7 Article

PPARγ agonists inhibit growth and expansion of CD133+brain tumour stem cells

Journal

BRITISH JOURNAL OF CANCER
Volume 99, Issue 12, Pages 2044-2053

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.bjc.6604786

Keywords

brain tumour stem cells; glioblastoma; PPAR gamma; anti-cancer drug; Jak-Stat pathway

Categories

Ask authors/readers for more resources

Brain tumour stem cells (BTSCs) are a small population of cells that has self-renewal, transplantation, multidrug resistance and recurrence properties, thus remain novel therapeutic target for brain tumour. Recent studies have shown that peroxisome proliferator-activated receptor gamma (PPAR gamma) agonists induce growth arrest and apoptosis in glioblastoma cells, but their effects on BTSCs are largely unknown. In this study, we generated gliospheres with more than 50% CD133+ BTSC by culturing U87MG and T98G human glioblastoma cells with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). In vitro treatment with PPARg agonist, 15-Deoxy-Delta(12,14)-Prostaglandin J(2) (15d-PGJ2) or all-trans retinoic acid resulted in a reversible inhibition of gliosphere formation in culture. Peroxisome proliferator-activated receptor gamma agonists inhibited the proliferation and expansion of glioma and gliosphere cells in a dose-dependent manner. Peroxisome proliferator-activated receptor gamma agonists also induced cell cycle arrest and apoptosis in association with the inhibition of EGF/bFGF signalling through Tyk2-Stat3 pathway and expression of PPARg in gliosphere cells. These findings demonstrate that PPARg agonists regulate growth and expansion of BTSCs and extend their use to target BTSCs in the treatment of brain tumour.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available