4.8 Article

Multidimensional Optical Sensing Platform for Detection of Heparin and Reversible Molecular Logic Gate Operation Based on the Phloxine B/Polyethyleneimine System

Journal

ANALYTICAL CHEMISTRY
Volume 87, Issue 3, Pages 1575-1581

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac504023b

Keywords

-

Funding

  1. National Natural Science Foundation of China [21273174]
  2. Municipal Science Foundation of Chongqing City [CSTC-2013jjB00002]
  3. Fundamental Research Funds for the Central Universities of China [XDJK2014D033]

Ask authors/readers for more resources

A multidimensional optical sensing platform which combines the advantages of resonance Rayleigh scattering (RRS), fluorescence, and colorimetry has been designed for detection of heparin. Phloxine B, a fluorescein derivative showing the special RRS spectrum in the long wavelength region, was selected to develop an easy-to-get system which can achieve switch-on sensing to obtain high sensitivity. The noise level of RRS in the long wavelength region is much weaker, and the reproducibility is much better; in this way, the sensitivity and selectivity can be improved. In the absence of heparin, the phloxine B and polyethyleneimine (PEI) form a complex through electrostatic interaction. Thus, the RRS signal at 554 nm is low; the phloxine B fluorescence is quenched, and the absorption signal is low. In the presence of heparin, competitive binding occurred between phloxine B and heparin toward PEI; then, phloxine B is gradually released from the phloxine B/PEI complex, causing obvious enhancement of the RRS, fluorescence, and absorption signals. Besides, the desorption of phloxine B is less effective for the heparin analogues, such as hyaluronic acid and chondroitin sulfate. In addition, the system presents a low detection limit of heparin to 5.0 x 10(-4) U mL(-1) and can also be applied to the detection of heparin in heparin sodium injection and 50% human serum samples with satisfactory results. Finally, the potential application of this method in reversible on-off molecular logic gate fabrication was discussed using the triple-channel optical signals as outputs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available