4.4 Article

Method for selection of soybeans tolerant to seed cracking under chilling temperatures

Journal

BREEDING SCIENCE
Volume 64, Issue 1, Pages 103-108

Publisher

JAPANESE SOC BREEDING
DOI: 10.1270/jsbbs.64.103

Keywords

soybean; cold damage; cracking seed; selection method

Funding

  1. Ministry of Agriculture, Forestry, and Fisheries of Japan [SFC1006]
  2. Grants-in-Aid for Scientific Research [24580002] Funding Source: KAKEN

Ask authors/readers for more resources

In Hokkaido, northern Japan, soybean [Glycine max (L.) Merr.] crops are damaged by cold weather. Chilling temperatures result in the appearance of cracking seeds (CS) in soybean crops, especially those grown in eastern and northern Hokkaido. Seed coats of CS are severely split on the dorsal side, and the cotyledons are exposed and frequently separated. CS occurrence causes unstable production because these seeds have no commodity value. However, little is known about the CS phenomenon. The aims of this study were to identify the cold-sensitive stage associated with CS occurrence and to develop a method to select CS-tolerant lines. First, we examined the relationship between chilling temperatures after flowering and CS occurrence in field tests. The average temperature 14 to 21 days after flowering was negatively correlated with the rate of CS. Second, we evaluated differences in CS tolerance among soybean cultivars and breeding lines in field tests. 'Toyohomare' and 'Toiku-238' were more CS-tolerant than 'Yukihomare' and 'Toyomusume'. Third, we developed a selection method in which plants were subjected to 21-day chilling-temperature treatment from 10 days after flowering in a phytotron. This enabled comparisons of CS tolerance among cultivars. This selection method will be useful for breeding CS-tolerant soybeans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available