4.8 Article

Real-Time Imaging of Mitochondrial Hydrogen Peroxide and pH Fluctuations in Living Cells Using a Fluorescent Nanosensor

Journal

ANALYTICAL CHEMISTRY
Volume 87, Issue 7, Pages 3678-3684

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac503975x

Keywords

-

Funding

  1. 973 Program [2013CB933800]
  2. National Natural Science Foundation of China [21227005, 21390411, 91313302, 21422505, 21375081]

Ask authors/readers for more resources

Mitochondrial reactive oxygen species (ROS) and pH fluctuations are closely correlated with mitochondrial dysfunctions, which are implicated in various human diseases including neurodegenerative disorders and cancers. Simultaneously monitoring the changes of ROS and pH of mitochondria remains a major challenge in the mitochondrial biology. In this study, we develop a novel mitochondria-targeted fluorescent nanosensor for real-time imaging of the fluctuations of hydrogen peroxide (H2O2) and pH in living cells. The fluorescence probes for detecting pH and H2O2 were loaded in the small-sized mesoporous silica nanoparticles (MSN). Then the polyethylenimine was attached to cap the pores of MSN, the triphenylphosphonium was further modified to target mitochondria in living cells. Confocal fluorescence imaging indicated that the nanosensor could effectively target mitochondria and successfully achieved real-time imaging of mitochondrial H2O2 and pH fluctuations in living cells. Notably, this is a single nanosensing system that is capable of visualizing multiple subcellular analytes at the same time and position by multicolor fluorescence imaging. The current approach can provide a promising tool to investigate the interplaying roles of various subcellular analytes in living cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available