4.5 Article

Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo

Journal

BREAST CANCER RESEARCH AND TREATMENT
Volume 120, Issue 1, Pages 253-260

Publisher

SPRINGER
DOI: 10.1007/s10549-009-0435-9

Keywords

Dichloroacetate; Breast cancer; Glycolysis; Metastasis; Animal model

Categories

Funding

  1. National Breast Cancer Foundation Australia
  2. NHMRC [366787]

Ask authors/readers for more resources

The glycolytic phenotype is a widespread phenomenon in solid cancer forms, including breast cancer. Dichloroacetate (DCA) has recently been proposed as a novel and relatively non-toxic anti-cancer agent that can reverse the glycolytic phenotype in cancer cells through the inhibition of pyruvate dehydrogenase kinase. We have examined the effect of DCA against breast cancer cells, including in a highly metastatic in vivo model. The growth of several breast cancer cell lines was found to be inhibited by DCA in vitro. Further examination of 13762 MAT rat mammary adenocarcinoma cells found that reversal of the glycolytic phenotype by DCA correlated with the inhibition of proliferation without any increase in cell death. This was despite a small but significant increase in caspase 3/7 activity, which may sensitize cancer cells to other apoptotic triggers. In vivo, DCA caused a 58% reduction in the number of lung metastases observed macroscopically after injection of 13762 MAT cells into the tail vein of rats (P = 0.0001, n a parts per thousand yen 9 per group). These results demonstrate that DCA has anti-proliferative properties in addition to pro-apoptotic properties, and can be effective against highly metastatic disease in vivo, highlighting its potential for clinical use.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available