4.5 Review

Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer

Journal

BREAST CANCER RESEARCH AND TREATMENT
Volume 114, Issue 1, Pages 47-62

Publisher

SPRINGER
DOI: 10.1007/s10549-008-9982-8

Keywords

Epithelium; Invasion; Microarray analysis; Stroma; Transcriptome

Categories

Funding

  1. Breast Cancer Research Foundation
  2. New York
  3. NCI [P30CA22435]
  4. NATIONAL CANCER INSTITUTE [P30CA022435] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Background Breast cancer invasion and metastasis involves both epithelial and stromal changes. Our objective was to delineate the pivotal role stroma plays in invasion by comparing transcriptomes among stromal and epithelial cells in normal tissue and invasive breast cancer. Methods Total RNA was isolated from epithelial and stromal cells that were laser captured from normal breast tissue (n = 5) and invasive breast cancer (n = 28). Gene expression was measured using Affymetrix U133A 2.0 GeneChips. Differential gene expression was evaluated and compared within a model that accounted for cell type (epithelial [E] versus stromal [S]), diagnosis (cancer [C] versus normal [N]) as well as cell type-diagnosis interactions. Results Compared to NE, the CE transcriptome was highly enriched with genes in proliferative, motility and ECM ontologies. Differences in CS and NS transcriptomes suggested that the ECM was being remodeled in invasive breast cancer, as genes were over-represented in ECM and proteolytic ontologies. Genes more highly expressed in CS compared to CE were primarily ECM components or were involved in the remodeling of ECM, suggesting that ECM biosynthesis and remodeling were initiated in the tumor stroma. Conclusion Based on identified molecular crosstalk between the two contiguous cell populations, a mechanistic model that spurs invasion is proposed, that shows breast cancer invasion proceeds through the acquisition of a motile phenotype in tumor epithelial cells and a reactive phenotype in cancer associated fibroblasts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available