4.8 Article

Paper-Based RNA Extraction, in Situ Isothermal Amplification, and Lateral Flow Detection for Low-Cost, Rapid Diagnosis of Influenza A (H1N1) from Clinical Specimens

Journal

ANALYTICAL CHEMISTRY
Volume 87, Issue 15, Pages 7872-7879

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.5b01594

Keywords

-

Funding

  1. National Institutes of Health (NIH) [R01 EB008268]
  2. Diversity Administrative Supplement under NIH [U54-EB015403-S1]
  3. National Science Foundation

Ask authors/readers for more resources

The 2009 Influenza A (H1N1) pandemic disproportionately affected the developing world and highlighted the key inadequacies of traditional diagnostic methods that make them unsuitable for use in resource-limited settings, from expensive equipment and infrastructure requirements to unacceptably long turnaround times. While rapid immunoassay diagnostic tests were much less costly and more context-appropriate, they suffered from drastically low sensitivities and high false negative rates. An accurate, sensitive, and specific molecular diagnostic that is also rapid, low-cost, and independent of laboratory infrastructure is needed for effective point-of-care detection and epidemiological control in these developing regions. We developed a paper-based assay that allows for the extraction and purification of RNA directly from human clinical nasopharyngeal specimens through a poly(ether sulfone) paper matrix, H1N1-specific in situ isothermal amplification directly within the same paper matrix, and immediate visual detection on lateral flow strips. The complete sample-to-answer assay can be performed at the point-of-care in just 45 min, without the need for expensive equipment or laboratory infrastructure, and it has a clinically relevant viral load detection limit of 10(6) copies/mL, offering a 10-fold improvement over current rapid immunoassays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available