4.5 Article

D-Cycloserine improves sociability in the BTBR T+Itpr3tf/J mouse model of autism spectrum disorders with altered Ras/Raf/ERK1/2 signaling

Journal

BRAIN RESEARCH BULLETIN
Volume 96, Issue -, Pages 62-70

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.brainresbull.2013.05.003

Keywords

D-Cycloserine; NMDA receptor; Sociability; Stereotypies; BTBR mice

Categories

Funding

  1. Eastern Virginia Medical School

Ask authors/readers for more resources

The genetically inbred BTBR T+ Itpr3tf/J (BTBR) mouse is a proposed model of autism spectrum disorders (ASDs). Similar to several syndromic forms of ASDs, mTOR activity may be enhanced in this mouse strain as a result of increased Ras signaling. Recently, D-cycloserine, a partial glycine(B) site agonist that targets the NMDA receptor, was shown to improve the sociability of the Balb/c mouse strain, another proposed genetically inbred model of ASDs. NMDA receptor activation is an important regulator of mTOR signaling activity. Given the ability of D-cycloserine to improve the sociability of the Balb/c mouse strain and the regulatory role of the NMDA receptor in mTOR signaling, we wondered if D-cycloserine would improve the impaired sociability of the BTBR mouse strain. D-Cycloserine (320 mg/kg, ip) improved measures of sociability in a standard sociability paradigm and spontaneous grooming that emerged during social interaction with an ICR stimulus mouse in the BTBR strain; however, similar effects were observed in the Swiss Webster comparator strain, raising questions about their strain-selectivity. Importantly, the profile of D-cycloserine's effects on both measures of sociability and stereotypies is consistent with that of a desired medication for ASDs; specifically, a desired medication would not improve sociability at the expense of worsening stereotypic behaviors or vice versa. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available