4.5 Article

Perineuronal satellite cells in mouse spinal ganglia express the gap junction protein connexin43 throughout life with decline in old age

Journal

BRAIN RESEARCH BULLETIN
Volume 75, Issue 5, Pages 562-569

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.brainresbull.2007.09.007

Keywords

dorsal root ganglia; peripheral neuroglia; aging

Categories

Ask authors/readers for more resources

Satellite glial cells that envelope the bodies of sensory neurons in spinal ganglia are connected to each other by gap junctions and exhibit dye coupling. These junctions may endow perineuronal satellite cells with the coordination necessary for the efficient performance of functions such as buffering of K+ in the perineuronal microenvironment, provision of metabolic support to ganglionic neurons, and neuroprotection. Our knowledge of gap junctions has increased considerably in recent years, but little information is available on the connexins that form these junctions in spinal ganglia. In the present study we set out to determine whether the perineuronal satellite cells of mouse spinal ganglia express the connexins that are mainly present in neuroglial cells (Cx32 and Cx43). In young (3 months) mice, PCR showed the presence of both Cx32 and Cx43 transcripts. By immunocytochemistry, we localized Cx32 to axon-ensheathing Schwann cells, but not to other parts of the ganglion. We found Cx43 positivity in the perineuronal satellite cells, which were identified by their immunoreactivity to S100 protein and to glutamine synthetase. PCR showed Cx43 transcripts also in the spinal ganglia of adult (8 months) and old (24 months) animals. Cx43 immunostaining was present in satellite cells surrounding all nerve cell bodies, irrespective of size. The mean number of Cx43-immunoreactive puncta was significantly lower in the perineuronal satellite cells of aged mice compared to young and adult animals. This latter finding is consistent with observations in non-nervous tissues, and the hypothesis that a prominent decrease in Cx43 is a marker of senescence. (C) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available