4.5 Article

Myocardial ischemic nociceptive signaling mediated by P2X3 receptor in rat stellate ganglion neurons

Journal

BRAIN RESEARCH BULLETIN
Volume 75, Issue 1, Pages 77-82

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.brainresbull.2007.07.031

Keywords

ATP; P2X(3) receptor; A-317491; stellate ganglion; myocardial ischemia

Categories

Ask authors/readers for more resources

Adenosine 5'-triphosphate (ATP) is implicated in peripheral pain signaling through activation of P2X receptors. P2X(3) receptors have a high level of expression in, and selective location on sensory afferents. P2X receptors, particularly the P2X(3) subtype, are identified as targets for novel analgesics. The stellate ganglion (SG) is peripheral sympathetic ganglia involved in heart function. Surgical interventions of sympathetic afferent pathways abolish or relieve angina pectoris, so it is showed that cardiac pain is mediated by the activation of afferents in sympathetic nerves. The cervicothoracic sympathetic ganglia, including the stellate ganglion, are implicated in sensations associated with myocardial ischemia or cardiac pain. In the present study we have examined P2X(3) involvement in cardiac nociceptive transmission. P2X receptor agonists activated currents (I-ATP) in SG neurons. The I-ATP amplitude and P2X(3) mRNA expression in myocardial ischemic injury group were much larger than those obtained in control group. Prostaglandin E-2 (PGE(2)) and substance P (SP) increased ATP-activated currents. P2X(3) receptor antagonist A-317491 reduced P2X agonist activated currents and P2X(3) mRNA expression. The results revealed that the myocardial ischemia induced the upregulation of P2X(3) receptor in function and morphous and P2X(3) receptor antagonist A-317491 inhibited P2X agonist activated currents and P2X(3) mRNA expression. The facts indicated that P2X(3) receptor in SG neurons was involved in cardiac nociceptive transmission. (C) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available