4.7 Article

Enhancing capacitive deionization performance of electrospun activated carbon nanofibers by coupling with carbon nanotubes

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 446, Issue -, Pages 373-378

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2014.12.065

Keywords

Carbon nanofibers; CNTs; Electrospinning; Capacitive deionization

Funding

  1. National Natural Science Foundation of China [51102033, 21336001]
  2. Fundamental Research Funds for the Central Universities [DUT14LAB05]

Ask authors/readers for more resources

Capacitive deionization (CDI) is an alternative, effective and environmentally friendly technology for desalination of brackish water. The performance of the CDI device is highly determined by the electrode materials. In this paper, a composite of carbon nanotubes (CNTs) embedded in activated carbon nanofiber (ACF) was prepared by a direct co-electrospinning way and subsequent CO2 activation. The introduction of CNTs can greatly improve the conductivity while the CO2-mediated activation can render the final product with high porosity. As such, the hybrid structure can provide an excellent storage space and pathways for ion adsorption and conduction. When evaluated as electrode materials for CDI, the as-prepared CNT/ACF composites with higher electrical conductivity and mesopore ratios exhibited higher electrosorption capacity and good regeneration performance in comparison with the pure ACF. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available