4.5 Article

Galectin-3 mediates post-ischemic tissue remodeling

Journal

BRAIN RESEARCH
Volume 1288, Issue -, Pages 116-124

Publisher

ELSEVIER
DOI: 10.1016/j.brainres.2009.06.073

Keywords

Stroke; Proliferation; Angiogenesis; Neurogenesis; Neural progenitor

Categories

Ask authors/readers for more resources

Galectin-3 (Gal-3) is a member of a class of carbohydrate-binding proteins and plays a role in a number of cellular functions such as cell proliferation, angiogenesis and differentiation. We observed an up-regulated expression of Gal-3 in the ischemic brain following transient middle cerebral artery occlusion in rats. Compared to the brain of sham-operated rats, the expression of Gal-3 was increased in the ischemic striatum at day 1 of reperfusion. The number of Gal-3(+) cells in the ischemic brain was further increased at day 2 and day 3, and peaked at day 7 of reperfusion. The up-regulated expression of Gal-3 persisted from day 14 to 2 months after reperfusion. Double staining showed co-localization of Gal-3 with OX-42(+) cells, glial fibrillary acidic protein (GFAP)(+) and ED1(+) cells, suggesting that activated microglia/infiltrating macrophages and activated astrocytes are the primary source of Gal-3 in the ischemic brain. in the in vitro setting, Gal-3 treatment dose-dependently stimulated the proliferation of endothelial cells and neural progenitors. Blockade of Gal-3 activity by infusing a neutralizing antibody against Gal-3 into the ischemic striatum decreased ischemia-induced angiogenesis and the proliferation of neural progenitors. These results suggest that Gal-3 expressed by activated microglia/infiltrating macrophages and astrocytes in the ischemic brain may play a role in post-ischemic tissue remodeling by enhancing angiogenesis and neurogenesis. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available