4.5 Article

Effects of interleukin-15 on neuronal differentiation of neural stem cells

Journal

BRAIN RESEARCH
Volume 1304, Issue -, Pages 38-48

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2009.09.009

Keywords

Interleukin-15; Neural cell; Differentiation; Neuron; Oligodendrocyte; Astrocyte

Categories

Funding

  1. Institute of Nuclear Energy Research
  2. National Science Council [970945L, NSC96-3111-B016-002]

Ask authors/readers for more resources

Interleukin-15 (IL-15) signaling has pleiotropic actions in many cell types during development and has been best studied in cells of immune system lineage, where IL-15 stimulates proliferation of cytotoxic T cells and induces maturation of natural killer cells. A few reports have indicated that IL-15 and the IL-15 receptor are expressed in central nervous system tissues and neuronal cell lines. Because this aspect of IL-15 action is poorly studied, we used cultured rat neural stem cells (NSCs) to study IL-15 signal transduction and activity. Primary cultures of rat NSCs in culture will form neurospheres and will differentiate into neuron, astrocyte, and oligodendrocyte progenitors under permissive conditions. We found by immunofluorescence that the IL-15R alpha subunit of the IL-15 receptor was expressed in NSCs and differentiating neurons, but not astrocyte or oligodendrocyte progenitors. We also showed that IL-15 treatment reduced MAP-2 protein levels in neurons and could reduce neurite outgrowth in differentiating neurons but did not affect NSC proliferation, and cell proportions and viability of the corresponding lineage cells. In the presence of a STAT3 inhibitor, Stattic, IL-15 no longer reduced MAP-2 protein levels. IL-15 treatment caused STAT3 phosphorylation. Furthermore, using anti-IL-15R alpha antibody to block IL-15 signaling completely inhibited IL-15-induced phosphorylation of STAT3 and prevented IL-15 from decreasing neurite outgrowth. In conclusion, IL-15 may influence neural cell differentiation through a signal transduction pathway involving IL-15R alpha and STAT3. This signal transduction modifies MAP-2 protein levels and, consequently, the differentiation of neurons from NSCs, as evidenced by reduced neurite outgrowth. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available