4.5 Article

MAMP-responsive MAPK cascades regulate phytoalexin biosynthesis

Journal

PLANT SIGNALING & BEHAVIOR
Volume 5, Issue 12, Pages 1653-1656

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/psb.5.12.13982

Keywords

MAMP; MAPK; phytoalexin; AtWRKY33; OsTGP1; arabidopsis; rice

Funding

  1. Ministry of Agriculture, Forestry and Fisheries of Japan (Genomics for Agricultural Innovation) [PMI0005]

Ask authors/readers for more resources

When plants sense the attack of microbial organisms, they initiate a series of defense responses. One of the most important defense components is the production of phytoalexins that are newly synthesized as anti-microbial secondary metabolites; however, knowledge about the signaling components regulating phytoalexin biosynthesis is limited. Mitogen-activated protein kinase (MAPK) cascades are key components in the defense signaling evoked by recognition of microbe-associated molecular patterns (MAMPs) that regulate several defense responses including phytoalexin biosynthesis. In Arabidopsis, biosynthesis of an indole-derived phytoalexin, camalexin, is regulated by MAPK cascades including AtMPK3, AtMPK4 and AtMPK6. Recently, we characterized a novel MAPK cascade in rice (OsMKK4-OsMPK3/OsMPK6) that induces production of diterpenoid phytoalexins by regulating the expression of their biosynthetic genes. Downstream signals of MAPK cascades are thought to be mediated by several transcription factors. To date, AtWRKY33 and OsTGAP1 have been identified as transcriptional activators of phytoalexin biosynthesis in Arabidopsis and rice. Here, we discuss and compare the regulatory mechanisms for phytoalexin biosynthesis through MAPK cascades and transcription factors in Arabidopsis and rice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available