4.5 Article

Reactive oxygen species generated by renal ischemia and reperfusion trigger protection against subsequent renal ischemia and reperfusion injury in mice

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
Volume 298, Issue 1, Pages F158-F166

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00474.2009

Keywords

acute kidney injury; renoprotection; inducible nitric oxygen synthase; heat shock protein

Funding

  1. Ministry of Education, Science and Technology [2009-0075157]

Ask authors/readers for more resources

Kim J, Jang HS, Park KM. Reactive oxygen species generated by renal ischemia and reperfusion trigger protection against subsequent renal ischemia and reperfusion injury in mice. Am J Physiol Renal Physiol 298: F158-F166, 2010. First published October 28, 2009; doi:10.1152/ajprenal.00474.2009.-Ischemic preconditioning by a single event of ischemia and reperfusion (SIRPC) dramatically protects renal function against ischemia and reperfusion (I/R) induced several weeks later. We recently reported that reactive oxygen species (ROS) and oxidative stress were sustained in a kidney that had functionally recovered from I/R injury, thus suggesting an association between SIRPC and ROS and oxidative stress. However, the role of ROS in SIRPC remains to be clearly elucidated. To assess the involvement of ROS in SIRPC, mice were subjected to SIRPC (30 min of bilateral renal ischemia and 8 days of reperfusion) and then exposed to I/R injury. Thirty minutes of bilateral renal ischemia in the non-SIRPC mice resulted in a marked increase in plasma creatinine levels 4 and 24 h after reperfusion, which was not observed in the I/R in the SIRPC mice. SIRPC resulted in increases in the levels of kidney superoxide. Administrations of manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin [MnTMPyP; a cell-permeable superoxide dismutase (SOD) mimetic] and N-acetylcysteine (NAc; a ROS scavenger) to SIRPC mice blocked the SIRPC-induced increase in superoxide levels and removed similar to 48-64% of the functional protection of the SIRPC kidney. Additionally, these administrations significantly inhibited I/R-induced increases in superoxide formation, hydrogen peroxide production, and lipid peroxidation, along with the inhibition of I/R-induced reductions in the expression and activity of manganese SOD, copper-zinc SOD, and catalase. Furthermore, administrations of MnTMPyP or NAc inhibited the SIRPC-induced increase in inducible nitric oxide synthase expression but did not inhibit the SIRPC-induced increases in heat shock protein-25 expression. In conclusion, the renoprotection afforded by SIRPC was triggered by ROS generated by SIRPC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available