4.7 Article

Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells

Journal

BRAIN BEHAVIOR AND IMMUNITY
Volume 39, Issue -, Pages 160-171

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbi.2013.10.030

Keywords

Exercise immunology; Acute stress; CD57; CD158; NKG2C; NKG2A; KLRG1; U266; 721.221; 221 AEH; RPMI-8226; K562

Funding

  1. NASA [NNX12AB48G]
  2. NASA [30923, NNX12AB48G] Funding Source: Federal RePORTER

Ask authors/readers for more resources

NK-cells undergo a licensing process as they develop into fully-functional cells capable of efficiently killing targets. NK-cell differentiation is accompanied by an increased surface expression of inhibitory killer immunoglobulin-like receptor (KIR) molecules, which is positively associated with cytotoxicity against the HLA-deficient K562 cell line. NK-cells are rapidly redeployed between the blood and tissues in response to acute exercise, but it is not known if exercise evokes a preferential trafficking of differentiated NK-cells or impacts NK-cell cytotoxic activity (NKCA) against HLA-expressing target cells. Sixteen healthy cyclists performed three 30-min bouts of cycling exercise at -5%, +5%, and +15% of lactate threshold. Blood samples obtained before, immediately after, and 1 h after exercise were used to enumerate NK-cells and their subsets, and determine NKCA and degranulating subsets (CD107+) against cell lines of multiple myeloma (U266 and RPMI-8226), lymphoma (721.221 and 221 AEH), and leukemia (K562) origin by 4 and 10-color flow cytometry, respectively. Exercise evoked a stepwise redeployment of NK-cell subsets in accordance with differentiation status [highly-differentiated (KIR+/NKG2A-) > medium-differentiated (KIR+/NKG2A+) > low-differentiated (KIR-/NKG2A+)] that was consistent across all exercise intensities. NKCA per cell increased similar to 6-fold against U266 and 221 AEH targets 1 h post-exercise and was associated with a decreased proportion of NK-cells expressing the inhibitory receptor CD158b and increased proportion of NK-cells expressing the activating receptor NKG2C, respectively. We conclude that exercise evokes a preferential redeployment of NK-cell subsets with a high differentiation phenotype and augments cytotoxicity against HLA-expressing target cells. Exercise may serve as a simple strategy to enrich the blood compartment of highly cytotoxic NK-cell subsets that can be harvested for clinical use. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available