4.7 Article

Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: A randomized controlled trial

Journal

BRAIN BEHAVIOR AND IMMUNITY
Volume 28, Issue -, Pages 16-24

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbi.2012.09.004

Keywords

Omega-3; Omega-6; Telomeres; Inflammation; Cell aging; Nutritional neuroscience; Oxidative stress; F2-isoprostanes; Fish oil

Funding

  1. NIH [AG029562, AG038621, UL1RR025755, CA16058]

Ask authors/readers for more resources

Shorter telomeres have been associated with poor health behaviors, age-related diseases, and early mortality. Telomere length is regulated by the enzyme telomerase, and is linked to exposure to proinflammatory cytokines and oxidative stress. In our recent randomized controlled trial, omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation lowered the concentration of serum proinflammatory cytokines. This study assessed whether n-3 PUFA supplementation also affected leukocyte telomere length, telomerase, and oxidative stress. In addition to testing for group differences, changes in the continuous n-6:n-3 PUFA ratio were assessed to account for individual differences in adherence, absorption, and metabolism. The double-blind four-month trial included 106 healthy sedentary overweight middle-aged and older adults who received (1) 2.5 g/day n-3 PUFAs, (2) l.25 g/day n-3 PUFAs, or (3) placebo capsules that mirrored the proportions of fatty acids in the typical American diet. Supplementation significantly lowered oxidative stress as measured by F2-isoprostanes (p = 0.02). The estimated geometric mean log-F2-isoprostanes values were 15% lower in the two supplemented groups compared to placebo. Although group differences for telomerase and telomere length were nonsignificant, changes in the n-6:n-3 PUFA plasma ratios helped clarify the intervention's impact: telomere length increased with decreasing n-6:n-3 ratios, p = 0.02. The data suggest that lower n-6:n-3 PUFA ratios can impact cell aging. The triad of inflammation, oxidative stress, and immune cell aging represents important pre-disease mechanisms that may be ameliorated through nutritional interventions. This translational research broadens our understanding of the potential impact of the n-6:n-3 PUFA balance. ClinicalTrials.gov identifier: NCT00385723. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available