4.5 Article

The chemokine receptor CX(3)CR1 is directly involved in the arrest of breast cancer cells to the skeleton

Journal

BREAST CANCER RESEARCH
Volume 13, Issue 5, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/bcr3016

Keywords

-

Categories

Funding

  1. Department of Defense [W81XWH-09-1-0593]
  2. National Institutes of Health [DA15014]
  3. NATIONAL INSTITUTE ON DRUG ABUSE [R01DA015014] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Introduction: Skeletal metastases from breast adenocarcinoma are responsible for most of the morbidity and mortality associated with this tumor and represent a significant and unmet need for therapy. The arrival of circulating cancer cells to the skeleton depends first on the adhesive interactions with the endothelial cells lining the bone marrow sinusoids, and then the extravasation toward chemoattractant molecules produced by the surrounding bone stroma. We have previously shown that the membrane-bound and cell-adhesive form of the chemokine fractalkine is exposed on the luminal side of human bone marrow endothelial cells and that bone stromal cells release the soluble and chemoattractant form of this chemokine. The goal of this study was to determine the role of fractalkine and its specific receptor CX(3)CR1 in the homing of circulating breast cancer cells to the skeleton. Methods: We employed a powerful pre-clinical animal model of hematogenous metastasis, in which fluorescent cancer cells are identified immediately after their arrival to the bone. We engineered cells to over-express either wild-type or functional mutants of CX(3)CR1 as well as employed transgenic mice knockout for fractalkine. Results: CX(3)CR1 protein is detected in human tissue microarrays of normal and malignant mammary glands. We also found that breast cancer cells expressing high levels of this receptor have a higher propensity to spread to the skeleton. Furthermore, studies with fractalkine-null transgenic mice indicate that the ablation of the adhesive and chemotactic ligand of CX(3)CR1 dramatically impairs the skeletal dissemination of circulating cancer cells. Finally, we conclusively confirmed the crucial role of CX(3)CR1 on breast cancer cells for both adhesion to bone marrow endothelium and extravasation into the bone stroma. Conclusions: We provide compelling evidence that the functional interactions between fractalkine produced by both the endothelial and stromal cells of bone marrow and the CX(3)CR1 receptor on breast cancer cells are determinant in the arrest and initial lodging needed for skeletal dissemination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available