4.7 Article

Dopamine-dependent reinforcement of motor skill learning: evidence from Gilles de la Tourette syndrome

Journal

BRAIN
Volume 134, Issue -, Pages 2287-2301

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/brain/awr147

Keywords

motor skill learning; reinforcement learning; dopamine; computational modelling; Gilles de la Tourette syndrome; dystonia

Funding

  1. Ecole de Neurosciences de Paris (ENP)
  2. Neuropole de Recherche Francilien (NERF)

Ask authors/readers for more resources

Reinforcement learning theory has been extensively used to understand the neural underpinnings of instrumental behaviour. A central assumption surrounds dopamine signalling reward prediction errors, so as to update action values and ensure better choices in the future. However, educators may share the intuitive idea that reinforcements not only affect choices but also motor skills such as typing. Here, we employed a novel paradigm to demonstrate that monetary rewards can improve motor skill learning in humans. Indeed, healthy participants progressively got faster in executing sequences of key presses that were repeatedly rewarded with 10 euro compared with 1 cent. Control tests revealed that the effect of reinforcement on motor skill learning was independent of subjects being aware of sequence-reward associations. To account for this implicit effect, we developed an actor-critic model, in which reward prediction errors are used by the critic to update state values and by the actor to facilitate action execution. To assess the role of dopamine in such computations, we applied the same paradigm in patients with Gilles de la Tourette syndrome, who were either unmedicated or treated with neuroleptics. We also included patients with focal dystonia, as an example of hyperkinetic motor disorder unrelated to dopamine. Model fit showed the following dissociation: while motor skills were affected in all patient groups, reinforcement learning was selectively enhanced in unmedicated patients with Gilles de la Tourette syndrome and impaired by neuroleptics. These results support the hypothesis that overactive dopamine transmission leads to excessive reinforcement of motor sequences, which might explain the formation of tics in Gilles de la Tourette syndrome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available