4.7 Article

Proximal dentatothalamocortical tract involvement in posterior fossa syndrome

Journal

BRAIN
Volume 132, Issue -, Pages 3087-3095

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/brain/awp241

Keywords

posterior fossa; cerebellum; mutism; medulloblastoma

Funding

  1. National Institutes of Health Cancer Center Support (CORE) [P30 CA 21765]
  2. National Institute of Child Health and Human Development [HD49888]
  3. American Lebanese Syrian Associated Charities (ALSAC)

Ask authors/readers for more resources

Posterior fossa syndrome is characterized by cerebellar dysfunction, oromotor/oculomotor apraxia, emotional lability and mutism in patients after infratentorial injury. The underlying neuroanatomical substrates of posterior fossa syndrome are unknown, but dentatothalamocortical tracts have been implicated. We used pre- and postoperative neuroimaging to investigate proximal dentatothalamocortical tract involvement in childhood embryonal brain tumour patients who developed posterior fossa syndrome following tumour resection. Diagnostic imaging from a cohort of 26 paediatric patients previously operated on for an embryonal brain tumour (13 patients prospectively diagnosed with posterior fossa syndrome, and 13 non-affected patients) were evaluated. Preoperative magnetic resonance imaging was used to define relevant tumour features, including two potentially predictive measures. Postoperative magnetic resonance and diffusion tensor imaging were used to characterize operative injury and tract-based differences in anisotropy of water diffusion. In patients who developed posterior fossa syndrome, initial tumour resided higher in the 4th ventricle (P = 0.035). Postoperative magnetic resonance signal abnormalities within the superior cerebellar peduncles and midbrain were observed more often in patients with posterior fossa syndrome (P = 0.030 and 0.003, respectively). The fractional anisotropy of water was lower in the bilateral superior cerebellar peduncles, in the bilateral fornices, white matter region proximate to the right angular gyrus (Tailerach coordinates 35, -71, 19) and white matter region proximate to the left superior frontal gyrus (Tailerach coordinates -24, 57, 20). Our findings suggest that multiple bilateral injuries to the proximal dentatothalamocortical pathways may predispose the development of posterior fossa syndrome, that functional disruption of the white matter bundles containing efferent axons within the superior cerebellar peduncles is a critical underlying pathophysiological component of posterior fossa syndrome, and that decreased fractional anisotropy in the fornices and cerebral cortex may be related to the abnormal neurobehavioural symptoms of posterior fossa syndrome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available