4.7 Article

Sensory capacity of reinnervated skin after redirection of amputated upper limb nerves to the chest

Journal

BRAIN
Volume 132, Issue -, Pages 1441-1448

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/brain/awp082

Keywords

targeted reinnervation; sensation; grating orientation; point localization; amputee

Funding

  1. National Institutes of Health [R01-HD-4-3137, R01-HD-4-4798, N01-HD-5-3402]
  2. Searle Funds at The Chicago Community Trust
  3. Defense Advanced Research Projects Agency [908090, N66001-06-C-80060]

Ask authors/readers for more resources

Targeted reinnervation is a new neural-machine interface that has been developed to help improve the function of new-generation prosthetic limbs. Targeted reinnervation is a surgical procedure that takes the nerves that once innervated a severed limb and redirects them to proximal muscle and skin sites. The sensory afferents of the redirected nerves reinnervate the skin overlying the transfer site. This creates a sensory expression of the missing limb in the amputees reinnervated skin. When these individuals are touched on this reinnervated skin they feel as though they are being touched on their missing limb. Targeted reinnervation takes nerves that once served the hand, a skin region of high functional importance, and redirects them to less functionally relevant skin areas adjacent to the amputation site. In an effort to better understand the sensory capacity of the reinnervated target skin following this procedure, we examined grating orientation thresholds and point localization thresholds on two amputees who had undergone the targeted reinnervation surgery. Grating orientation thresholds and point localization thresholds were also measured on the contralateral normal skin of the targeted reinnervation amputees and on analogous sites in able-bodied controls. Grating orientation thresholds for the reinnervated skin of the targeted reinnervation amputees were found to be similar to normal ranges for both the amputees contralateral skin and also for the control population. Point localization thresholds for these amputees were found to be lower for their reinnervated skin than for their contralateral skin. Reinnervated point localization thresholds values were also lower in comparison to homologous chest sites on the control population. Mechanisms appear to be in place to maximize re-established touch input in targeted reinnervation amputees. It seems that sound sensory function is provided to the denervated skin of the residual limb when connected to afferent pathways once serving highly functionally relevant regions of the brain. This suggests that tactile interface devices could be used to give a physiologically appropriate sense of touch to a prosthetic limb, which would likely help with better functional utilization of the prosthetic device and possibly help to more effectively integrate the device with the users self-image.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available