4.2 Article

Dopaminergic presynaptic modulation of nigral afferents: its role in the generation of recurrent bursting in substantia nigra pars reticulata neurons

Journal

FRONTIERS IN SYSTEMS NEUROSCIENCE
Volume 5, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fnsys.2011.00006

Keywords

basal ganglia; striatum; substantia nigra pars reticulata; dopamine function; striatonigral synapses; pallidonigral synapses; D-1-receptors; D-2-receptors

Categories

Funding

  1. Investigacion Multidisciplinaria de Proyectos Universitarios de Liderazgo y Superacion Academica (IMPULSA)-Universidad Nacional Autonoma de Mexico (UNAM)
  2. Direccion General de Asuntos del Personal Academico-UNAM [IN-205610, IN-206010]
  3. CONACyT-Mexico doctoral fellowships

Ask authors/readers for more resources

Previous work has shown the functions associated with activation of dopamine presynaptic receptors in some substantia nigra pars reticulata (SNr) afferents: (i) striatonigral terminals (direct pathway) posses presynaptic dopamine D-1-class receptors whose action is to enhance inhibitory postsynaptic currents (IPSCs) and GABA transmission. (ii) Subthalamonigral terminals posses D-1- and D-2-class receptors where D-1-class receptor activation enhances and D-2-class receptor activation decreases excitatory postsynaptic currents. Here we report that pallidonigral afferents posses D-2-class receptors (D-3 and D-4 types) that decrease inhibitory synaptic transmission via presynaptic modulation. No action of D-1-class agonists was found on pallidonigral synapses. In contrast, administration of D-1-receptor antagonists greatly decreased striatonigral IPSCs in the same preparation, suggesting that tonic dopamine levels help in maintaining the function of the striatonigral (direct) pathway. When both D-3 and D-4 type receptors were blocked, pallidonigral IPSCs increased in amplitude while striatonigral connections had no significant change, suggesting that tonic dopamine levels are repressing a powerful inhibition conveyed by pallidonigral synapses (a branch of the indirect pathway). We then blocked both D-1- and D-2-class receptors to acutely decrease direct pathway (striatonigral) and enhance indirect pathways (subthalamonigral and pallidonigral) synaptic force. The result was that most SNr projection neurons entered a recurrent bursting firing mode similar to that observed during Parkinsonism in both patients and animal models. These results raise the question as to whether the lack of dopamine in basal ganglia output nuclei is enough to generate some pathological signs of Parkinsonism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available