4.4 Article

Analysis of Coherent Structures Within the Atmospheric Boundary Layer

Journal

BOUNDARY-LAYER METEOROLOGY
Volume 131, Issue 2, Pages 147-171

Publisher

SPRINGER
DOI: 10.1007/s10546-009-9357-7

Keywords

Atmospheric boundary layer; Channel flow; Coherent structures; Direct numerical simulation; Large-eddy simulation; Proper orthogonal decomposition

Ask authors/readers for more resources

Large-eddy simulation has become an important tool for the study of the atmospheric boundary layer. However, since large-eddy simulation does not simulate small scales, which do interact to some degree with large scales, and does not explicitly resolve the viscous sublayer, it is reasonable to ask if these limitations affect significantly the ability of large-eddy simulation to simulate large-scale coherent structures. This issue is investigated here through the analysis of simulated coherent structures with the proper orthogonal decomposition technique. We compare large-eddy simulation of the atmospheric boundary layer with direct numerical simulation of channel flow. Despite the differences of the two flow types it is expected that the atmospheric boundary layer should exhibit similar structures as those in the channel flow, since these large-scale coherent structures arise from the same primary instability generated by the interaction of the mean flow with the wall surface in both flows. It is shown here that several important similarities are present in the two simulations: (i) coherent structures in the spanwise-vertical plane consist of a strong ejection between a pair of counter-rotating vortices; (ii) each vortex in the pair is inclined from the wall in the spanwise direction with a tilt angle of approximately 45A degrees; (iii) the vortex pair curves up in the streamwise direction. Overall, this comparison adds further confidence in the ability of large-eddy simulation to produce large-scale structures even when wall models are used. Truncated reconstruction of instantaneous turbulent fields is carried out, testing the ability of the proper orthogonal decomposition technique to approximate the original turbulent field with only a few of the most important eigenmodes. It is observed that the proper orthogonal decomposition reconstructs the turbulent kinetic energy more efficiently than the vorticity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available