4.6 Article

Gentamicin and bone morphogenic protein-2 (BMP-2)-delivering heparinized-titanium implant with enhanced antibacterial activity and osteointegration

Journal

BONE
Volume 50, Issue 4, Pages 974-982

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2012.01.007

Keywords

Titanium; Gentamicin; Bone morphogenic protein-2; Antibacterial activity; Osteointegration

Funding

  1. Ministry of Health & Welfare, Republic of Korea [A110416]
  2. Korea Health Promotion Institute [A110416120002] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Insufficient bonding of implants to bone tissues and bacterial infections lead to the failure of titanium (Ti)-based orthopedic and dental implants. The aim of this study is to develop novel Ti implants that enhance osteoblast functions, while simultaneously decreasing bacterial infections. First, the surface of pristine Ti was functionalized with heparin-dopamine by mimicking a mussel adhesion mechanism. Gentamicin sulfate (GS) and/or bone morphogenic protein-2 (BMP-2) was then sequentially immobilized to the heparinized-Ti (Hep-Ti) surface. The compositions of pristine Ti and Hep-Ti with or without gentamicin and/or BMP-2 were characterized by X-ray photoelectron spectroscopy (XPS) and the growth of Staphylococcus aureus on the substrates was assayed. Osteoblast functions of all Ti substrates were investigated by cell proliferation assays, alkaline phosphatase (ALP) activity, and calcium deposition. The results showed that the growth of bacteria on GS/Hep-Ti and GS/BMP-2/Hep-Ti was significantly lower compared to that on the pristine Ti and BMP-2/Hep-Ti. In addition, BMP-2/Hep-Ti and GS/BMP-2/Hep-Ti significantly enhanced ALP activity and calcium mineral deposition of osteoblast cells. Taken together, GS/BMP-2/Hep-Ti could achieve the dual functions of excellent antibacterial activity and osteoblast function promotion. Therefore, dual drug (antibiotics and osteoinductive protein)-eluting Ti substrates such as GS/BMP-2/Hep-Ti are a promising material for the enhanced osteointegration and implant longevity in orthopedics and dentistry. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available