4.6 Article

EphB/ephrin-B interactions mediate human MSC attachment, migration and osteochondral differentiation

Journal

BONE
Volume 48, Issue 3, Pages 533-542

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.bone.2010.10.180

Keywords

Stem cell; Bone; Cartilage; Eph; Ephrin; Mesenchymal stem cell

Funding

  1. Robinson Institute Research
  2. NHMRC [565176]

Ask authors/readers for more resources

Bone marrow derived mesenchymal stem/stromal cells (MSC) contribute to skeletal tissue formation and the regulation of haematopoiesis. The Eph/ephrin family of receptor tyrosine kinases is potentially important in the maintenance of the stem cell niche within neural, intestinal and dental tissues and has recently been shown to play a role in regulating bone homeostasis. However, the contribution of EphB/ephrin-B molecules in human MSC function remains to be determined. In the present study, EphB and ephrin-B molecules were expressed by ex vivo expanded human MSC populations and within human bone marrow trephine samples. To elucidate the contribution of EphB/ephrin-B molecules in MSC recruitment, we performed functional spreading and migration assays and showed that reverse ephrin-B signalling inhibited MSC attachment and spreading by activating Src-, PI3Kinase- and JNK-dependent signalling pathways. In contrast, forward EphB2 signalling promoted MSC migration by activating the Src kinase- and Abl-dependent signalling pathways. Furthermore, activation of ephrin-B1 and/or ephrin-B2 molecules expressed by MSC was found to increase osteogenic differentiation, while ephrin-B1 activation promoted chondrogenic differentiation. These observations suggest that EphB/ephrin-B interactions may mediate the recruitment, migration and differentiation of MSC during bone repair. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available