3.8 Review

Safety and tolerability of denosumab for the treatment of postmenopausal osteoporosis

Journal

DRUG HEALTHCARE AND PATIENT SAFETY
Volume 3, Issue -, Pages 79-91

Publisher

DOVE MEDICAL PRESS LTD
DOI: 10.2147/DHPS.S7727

Keywords

denosumab; osteoporosis; safety; risk; benefit; FDA

Ask authors/readers for more resources

Denosumab is a fully human monoclonal antibody to receptor activator of nuclear factor kappa-B ligand (RANKL), a cytokine member of the tumor necrosis factor family that is the principal regulator of osteoclastic bone resorption. Postmenopausal osteoporosis (PMO) is a systemic skeletal disease associated with high levels of RANKL, resulting in a high rate of bone remodeling and an imbalance of bone resorption over bone formation. By inhibiting RANKL in women with PMO, denosumab reduces the rate of bone remodeling, thereby increasing bone mineral density, improving bone strength, and reducing the risk of fractures. In clinical trials of women with osteoporosis and low bone mineral density, denosumab has been well tolerated, with overall rates of adverse events and serious adverse events in women treated with denosumab similar to those receiving placebo. In the largest clinical trial of denosumab for the treatment of women with PMO, there was a significantly greater incidence of cellulitis reported as a serious adverse event, with no difference in the overall incidence of cellulitis, and a significantly lower incidence of the serious adverse event of concussions with denosumab compared with placebo. The evidence supports a favorable balance of benefits versus risks of denosumab for the treatment of PMO. Assessments of the long-term safety of denosumab are ongoing. Denosumab 60 mg subcutaneously every 6 months is an approved treatment for women with PMO who are at high risk for fracture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available