4.0 Article

Modeling cellular deformations using the level set formalism

Journal

BMC SYSTEMS BIOLOGY
Volume 2, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1752-0509-2-68

Keywords

-

Funding

  1. NIH [NIGMS R01-71920]
  2. NSF [0621740]
  3. Division of Computing and Communication Foundations
  4. Direct For Computer & Info Scie & Enginr [0621740] Funding Source: National Science Foundation

Ask authors/readers for more resources

Background: Many cellular processes involve substantial shape changes. Traditional simulations of these cell shape changes require that grids and boundaries be moved as the cell's shape evolves. Here we demonstrate that accurate cell shape changes can be recreated using level set methods (LSM), in which the cellular shape is defined implicitly, thereby eschewing the need for updating boundaries. Results: We obtain a viscoelastic model of Dictyostelium cells using micropipette aspiration and show how this viscoelastic model can be incorporated into LSM simulations to recreate the observed protrusion of cells into the micropipette faithfully. We also demonstrate the use of our techniques by simulating the cell shape changes elicited by the chemotactic response to an external chemoattractant gradient. Conclusion: Our results provide a simple but effective means of incorporating cellular deformations into mathematical simulations of cell signaling. Such methods will be useful for simulating important cellular events such as chemotaxis and cytokinesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available