4.7 Article

Insights into the evolution and diversification of the AT-hook Motif Nuclear Localized gene family in land plants

Journal

BMC PLANT BIOLOGY
Volume 14, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12870-014-0266-7

Keywords

AT-hook motif; AT-Hook Motif Nuclear Localized (AHL) genes; Diversification; PPC domain; Phylogeny

Categories

Funding

  1. Agriculture and Food Research Initiative of the USDA National Institute of Food and Agriculture [2013-67013-21666]
  2. O. A. Vogel Wheat Research Fund
  3. Washington Grain Commission
  4. Global Plant Sciences Initiative Research Fellowship (Washington State University)
  5. Pacific Seed Association Fellowship
  6. Maguire International Seed Technology Fellowship
  7. Lindahl Memorial Scholarship
  8. Roscoe & Francis Cox Scholarship
  9. Brubbaken and Reinbold Monocot Breeding Fund

Ask authors/readers for more resources

Background: Members of the ancient land-plant-specific transcription factor AT-Hook Motif Nuclear Localized (AHL) gene family regulate various biological processes. However, the relationships among the AHL genes, as well as their evolutionary history, still remain unexplored. Results: We analyzed over 500 AHL genes from 19 land plant species, ranging from the early diverging Physcomitrella patens and Selaginella to a variety of monocot and dicot flowering plants. We classified the AHL proteins into three types (Type-I/-II/-III) based on the number and composition of their functional domains, the AT-hook motif(s) and PPC domain. We further inferred their phylogenies via Bayesian inference analysis and predicted gene gain/loss events throughout their diversification. Our analyses suggested that the AHL gene family emerged in embryophytes and further evolved into two distinct clades, with Type-I AHLs forming one clade (Clade-A), and the other two types together diversifying in another (Clade-B). The two AHL clades likely diverged before the separation of Physcomitrella patens from the vascular plant lineage. In angiosperms, Clade-A AHLs expanded into 5 subfamilies; while, the ones in Clade-B expanded into 4 subfamilies. Examination of their expression patterns suggests that the AHLs within each clade share similar expression patterns with each other; however, AHLs in one monophyletic clade exhibit distinct expression patterns from the ones in the other clade. Over-expression of a Glycine max AHL PPC domain in Arabidopsis thaliana recapitulates the phenotype observed when over-expressing its Arabidopsis thaliana counterpart. This result suggests that the AHL genes from different land plant species may share conserved functions in regulating plant growth and development. Our study further suggests that such functional conservation may be due to conserved physical interactions among the PPC domains of AHL proteins. Conclusions: Our analyses reveal a possible evolutionary scenario for the AHL gene family in land plants, which will facilitate the design of new studies probing their biological functions. Manipulating the AHL genes has been suggested to have tremendous effects in agriculture through increased seedling establishment, enhanced plant biomass and improved plant immunity. The information gleaned from this study, in turn, has the potential to be utilized to further improve crop production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available