4.7 Article

The cellulose synthase superfamily in fully sequenced plants and algae

Journal

BMC PLANT BIOLOGY
Volume 9, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1471-2229-9-99

Keywords

-

Categories

Funding

  1. U.S. Department of Energy [4000063512]
  2. National Science Foundation [NSF/DEB-0830024, NSF/DBI-0354771, NSF/ITR-IIS-0407204, NSF/DBI-0542119, NSF/CCF0621700]
  3. Office of Biological and Environmental Research in the DOE Office of Science
  4. Direct For Biological Sciences
  5. Division Of Environmental Biology [0830024] Funding Source: National Science Foundation

Ask authors/readers for more resources

Background: The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl) families and one cellulose synthase (CesA) family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses. Results: A single-copy gene is found in the six chlorophyte green algae, which is most closely related to the CslA and CslC families that are present in the seven land plants investigated in our analyses. Six proteins from poplar, grape and sorghum form a distinct family (CslJ), providing further support for the conclusions from two recent studies. CslB/E/G/H/J families have evolved significantly more rapidly than their widely distributed relatives, and tend to have intragenomic duplications, in particular in the grape genome. Conclusion: Our data suggest that the CslA and CslC families originated through an ancient gene duplication event in land plants. We speculate that the single-copy Csl gene in green algae may encode a mannan synthase. We confirm that the rest of the Csl families have a different evolutionary origin than CslA and CslC, and have proposed a model for the divergence order among them. Our study provides new insights about the evolution of this important gene family in plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available