3.8 Article

Production of extracellular enzymes in the entomopathogenic fungus Verticillium lecanii

Journal

BIOINFORMATION
Volume 9, Issue 5, Pages 238-242

Publisher

BIOMEDICAL INFORMATICS
DOI: 10.6026/97320630009238

Keywords

Verticillium lecanii; Mycoinsecticides; Protease; Amylase; Lipase; Enzymatic Index

Ask authors/readers for more resources

This study investigates the mechanisms as well as strategies for purification and characterization of potential enzymes involved in pathogenesis of entomopathogenic fungi. The test strain of Verticillium lecanii that was screened, during the present investigation, proved to be an efficient producer of protein and polysaccharide degrading enzymes (amylase, protease, and lipase), hence indicating versatility in biochemical mechanisms. Halo zones produced colony growth of V. lecanii on agar confirmed activity of protease, amylase and lipase enzyme by the V. lecanii isolate. Enzymatic Index (EI) observed were: Protease -2.195, Amylase2.196, Lipase-2.147. Spectrophotometric analysis of enzymatic activity of V. lecanii at five different pH -3, 5, 7, 9, 11 revealed that highest proteolytic activity of the V. lecanii isolate was reported at pH 7 and 9 whereas proteolytic activity was minimum at acidic pH 3. Maximum amylolytic activity of V. lecanii on the 7th day of inoculation was at pH 3 i. e. in an acidic environment in contrast to neutral pH 7. Maximum lipolytic activity of V. lecanii was found at pH 7. Since enzyme production in entomopathogenic fungi is specific and forms an important criterion for successful development as well as improvement of mycoinsecticides, hence a significant conclusion from the present analysis is the degree of variation in secretion of enzymes in test strain of Verticillium lecanii.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available