3.8 Article

Effect of ambient lighting on liquid-crystal displays with different types of surface treatment

Journal

RADIOLOGICAL PHYSICS AND TECHNOLOGY
Volume 6, Issue 1, Pages 121-129

Publisher

SPRINGER JAPAN KK
DOI: 10.1007/s12194-012-0178-x

Keywords

Liquid-crystal display; Surface treatment; Ambient lighting; Diffuse reflection; Specular reflection

Ask authors/readers for more resources

Liquid-crystal displays (LCDs) with different types of surface treatment have been developed for decreasing the effect of ambient lighting on a displayed image. The effect of ambient lighting on LCDs with different surface treatments, namely, glare (G)-type, anti-glare (AG)-type, and anti-reflection (AR)-coating LCDs, was evaluated quantitatively in this study for appropriate selection. The effect of ambient lighting on diffuse reflection and specular reflection was investigated. The coefficient of diffuse reflection of the AR-coating LCD was smaller than the others. The effect of diffuse reflection on the display function of each LCD was evaluated in terms of the deviation of the contrast response at the lowest luminance level when the illuminance changed from the condition that was used for calibration of the grayscale standard display function. The display function of the AR-coating LCD was affected less by diffuse reflection compared to the others. On the other hand, the coefficient of specular reflection of the AG-type LCD was the smallest until the angle of aperture of the light source was 4.6 degrees. The specular-reflected image on the AG-type LCD had a remarkably broad distribution compared to the others. Our results are merely examples for a limited number of LCDs; however, we clarified quantitatively that the AR-coating and the AG-type LCDs were affected less by diffuse and specular reflection than the G-type LCD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available