4.6 Article

QTL mapping reveals a tight linkage between QTLs for grain weight and panicle spikelet number in rice

Journal

RICE
Volume 6, Issue -, Pages -

Publisher

SPRINGER
DOI: 10.1186/1939-8433-6-33

Keywords

Rice; Spikelets per panicle; 1,000-grain weight; QTL; Linkage; Near isogenic lines

Categories

Funding

  1. Rural Development Administration [PJ906910]
  2. Next-Generation Biogreen 21 Program (Plant Molecular Breeding Center), Rural Development Administration, Republic of Korea [PJ008136]

Ask authors/readers for more resources

Background: A number of QTL studies reported that one genomic region was associated with several traits, indicating linkage and/or pleiotropic effects. The question of pleiotropy versus tight linkage in these studies should be solved using a large-size population combined with high-density mapping. For example, if each of the 2 parents has a TGW-increasing or SPP-increasing QTL that is tightly linked, complementary combination of the 2 beneficial QTLs by using molecular markers could produce higher yields compared to the 2 parents. However, a pleiotropic QTL with opposite effects on the SPP and 1,000-grain weight (TGW) is complicated and challenging in terms of its application to rice improvement. Results: In this study, using a series of BC5F4 nearly isogenic lines (NILs) that were derived from a cross between the Korean japonica cultivar Hwayeongbyeo and Oryza rufipogon, we demonstrated that 2 QTLs, qSPP5 for spikelets per panicle (SPP) and qTGW5 for grain weight (TGW), are tightly linked on chromosome 5. Alleles from the O. rufipogon parent increased the SPP and decreased TGW in the Hwayeongbyeo background. qSPP5 was located within a 803-kb interval between the simple sequence repeat (SSR) markers INDEL3 and RM18076. Based on the map position, qTGW5 seemed to be the same gene as qSW5, which controls grain morphology. The additive effect of the O. rufipogon allele at qSPP5 was 10-15 SPP, and 33.0% of the phenotypic variance could be explained by the segregation of the SSR marker RM18058. Yield trials with BC5F4 NILs showed that lines that contained a homozygous O. rufipogon introgression at the qSPP5 region out-yielded sibling NILs that contained Hwayeongbyeo DNA by 15.3% and out-yielded the Hwayeongbyeo parent by 7.3%. Conclusion: Based on the finding that the O. rufipogon allele for the SPP was beneficial in the japonica and indica cultivar backgrounds, the qSPP5 allele could be valuable for improving rice yields. In addition, the NIL populations and molecular markers are useful for cloning qSPP5.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available