3.8 Article

Selective constraint and the evolution of the RNA Polymerase II C-Terminal Domain

Journal

TRANSCRIPTION-AUSTIN
Volume 4, Issue 2, Pages 77-86

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/trns.23305

Keywords

RNA Polymerase II; CTD; purifying selection; eukaryote evolution; selective constraint; dN/dS

Ask authors/readers for more resources

The C-Terminal Domain (CTD) of the large subunit (Rpb1) of RNA Polymerase II has a Tyrosine-Serine-Proline-Threonine-Serine-Proline-Serine repeat structure in many eukaryotes. Chemical modifications of these residues play a central role in the regulation and coordination of the events of transcription. However, substantial variability in the presence and regularity of repeat arrays exists between eukaryote taxa. Following a survey of CTD structure from diverse eukaryote species, two hypotheses were tested relating to repeat structure and the action of selection on the CTD. First, it was found that degenerated repeat structure is associated with lower serine and proline frequencies in some eukaryote taxa but not in others. Second, maximum likelihood models of the evolution of Rpb1 in a number of species groups found that purifying selection on the non-repetitive CTD of several Leishmania species was substantially lower than for the rest of Rpb1, whereas purifying selection in a number of species groups containing repeat arrays was usually as high or nearly as high as for the rest of Rpb1. Characterization of CTD structure for a larger number of species than has been completed previously also revealed a greater diversity of CTD structures in eukaryotes than previously known, along with loss of repeat structure in the animals and fungi, two taxa where it has not previously been known. These results suggest that loss of CTD repeat structure has been an important aspect of RNA Polymerase II evolution in diverse eukaryotes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available