4.7 Article

Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? - A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21

Journal

BMC GENOMICS
Volume 14, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1471-2164-14-738

Keywords

Transgenesis; Marker-assisted backcrossing; Substantial equivalence; Transcriptome profile; Xa21

Funding

  1. Ministry of Agriculture of China [2013ZX08001-002]
  2. Ministry of Science and Technology of China [2011BAD35B02-05]
  3. Chinese Academy of Sciences [KSCX2-EW-N-01]
  4. Natural Science Foundation of China [31300999]
  5. United States National Science Foundation [DBI-0743797]
  6. United States National Institutes of Health [R01GM100364]
  7. Jianhan University, Wuhan, China
  8. Div Of Biological Infrastructure
  9. Direct For Biological Sciences [0743797] Funding Source: National Science Foundation

Ask authors/readers for more resources

Background: The potential impact of genetically modified (GM) plants on human health has attracted much attention worldwide, and the issue remains controversial. This is in sharp contrast to the broad acceptance of plants produced by breeding through Marker Assisted Backcrossing (MAB). Results: Focusing on transcriptome variation and perturbation to signaling pathways, we assessed the molecular and biological aspects of substantial equivalence, a general principle for food safety endorsed by the Food and Agricultural Organization and the World Health Organization, between a transgenic crop and a plant from MAB breeding. We compared a transgenic rice line (DXT) and a MAB rice line (DXB), both of which contain the gene Xa21 providing resistance to bacterial leaf blight. By using Next-Generation sequencing data of DXT, DXB and their parental line (D62B), we compared the transcriptome variation of DXT and DXB. Remarkably, DXT had 43% fewer differentially expressed genes (DEGs) than DXB. The genes exclusively expressed in DXT and in DXB have pathogen and stress defense functions. Functional categories of DEGs in DXT were comparable to that in DXB, and seven of the eleven pathways significantly affected by transgenesis were also perturbed by MAB breeding. Conclusions: These results indicated that the transgenic rice and rice from MAB breeding are substantial equivalent at the transcriptome level, and paved a way for further study of transgenic rice, e. g., understanding the chemical and nutritional properties of the DEGs identified in the current study.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available