4.7 Article

Construction of physical maps for the sex-specific regions of papaya sex chromosomes

Journal

BMC GENOMICS
Volume 13, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/1471-2164-13-176

Keywords

Bacterial artificial chromosome (BAC); Carica papaya; Sex chromosomes; Sex determination; Suppression of recombination

Funding

  1. National Science Foundation (NSF) Plant Genome Research Program [DBI 0553417, DBI 0922545]
  2. University of Illinois Research Board
  3. Division Of Integrative Organismal Systems
  4. Direct For Biological Sciences [0922545] Funding Source: National Science Foundation

Ask authors/readers for more resources

Background: Papaya is a major fruit crop in tropical and subtropical regions worldwide. It is trioecious with three sex forms: male, female, and hermaphrodite. Sex determination is controlled by a pair of nascent sex chromosomes with two slightly different Y chromosomes, Y for male and Y-h for hermaphrodite. The sex chromosome genotypes are XY (male), XYh (hermaphrodite), and XX (female). The papaya hermaphrodite-specific Y-h chromosome region (HSY) is pericentromeric and heterochromatic. Physical mapping of HSY and its X counterpart is essential for sequencing these regions and uncovering the early events of sex chromosome evolution and to identify the sex determination genes for crop improvement. Results: A reiterate chromosome walking strategy was applied to construct the two physical maps with three bacterial artificial chromosome (BAC) libraries. The HSY physical map consists of 68 overlapped BACs on the minimum tiling path, and covers all four HSY-specific Knobs. One gap remained in the region of Knob 1, the only knob structure shared between HSY and X, due to the lack of HSY-specific sequences. This gap was filled on the physical map of the HSY corresponding region in the X chromosome. The X physical map consists of 44 BACs on the minimum tiling path with one gap remaining in the middle, due to the nature of highly repetitive sequences. This gap was filled on the HSY physical map. The borders of the non-recombining HSY were defined genetically by fine mapping using 1460 F-2 individuals. The genetically defined HSY spanned approximately 8.5 Mb, whereas its X counterpart extended about 5.4 Mb including a 900 Kb region containing the Knob 1 shared by the HSY and X. The 8.5 Mb HSY corresponds to 4.5 Mb of its X counterpart, showing 4 Mb (89%) DNA sequence expansion. Conclusion: The 89% increase of DNA sequence in HSY indicates rapid expansion of the Yh chromosome after genetic recombination was suppressed 2-3 million years ago. The genetically defined borders coincide with the common BACs on the minimum tiling paths of HSY and X. The minimum tiling paths of HSY and its X counterpart are being used for sequencing these X and Y-h-specific regions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available