4.7 Article

Whole-genome resequencing shows numerous genes with nonsynonymous SNPs in the Japanese native cattle Kuchinoshima-Ushi

Journal

BMC GENOMICS
Volume 12, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1471-2164-12-103

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology [S0801025]

Ask authors/readers for more resources

Background: Because the Japanese native cattle Kuchinoshima-Ushi have been isolated in a small island and their lineage has been intensely protected, it has been assumed to date that numerous and valuable genomic variations are conserved in this cattle breed. Results: In this study, we evaluated genetic features of this breed, including single nucleotide polymorphism (SNP) information, by whole-genome sequencing using a Genome Analyzer II. A total of 64.2 Gb of sequence was generated, of which 86% of the obtained reads were successfully mapped to the reference sequence (Btau 4.0) with BWA. On an average, 93% of the genome was covered by the reads and the number of mapped reads corresponded to 15.8-fold coverage across the covered region. From these data, we identified 6.3 million SNPs, of which more than 5.5 million (87%) were found to be new. Out of the SNPs annotated in the bovine sequence assembly, 20,432 were found in protein-coding regions containing 11,713 nonsynonymous SNPs in 4,643 genes. Furthermore, phylogenetic analysis using sequence data from 10 genes (more than 10 kbp) showed that Kuchinoshima-Ushi is clearly distinct from European domestic breeds of cattle. Conclusions: These results provide a framework for further genetic studies in the Kuchinoshima-Ushi population and research on functions of SNP-containing genes, which would aid in understanding the molecular basis underlying phenotypic variation of economically important traits in cattle and in improving intrinsic defects in domestic cattle breeds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available