4.5 Article

Non-exhaustive DNA methylation-mediated transposon silencing in the black truffle genome, a complex fungal genome with massive repeat element content

Journal

GENOME BIOLOGY
Volume 15, Issue 7, Pages -

Publisher

BMC
DOI: 10.1186/s13059-014-0411-5

Keywords

-

Funding

  1. Fondazione Cariparma
  2. Ministry of Education, University and Research (MIUR)
  3. Institute for Genomics and Proteomics at UCLA
  4. NATIONAL HUMAN GENOME RESEARCH INSTITUTE [T32HG002536] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Background: We investigated how an extremely transposon element (TE)-rich organism such as the plant-symbiotic ascomycete truffle Tuber melanosporum exploits DNA methylation to cope with the more than 45,000 repeated elements that populate its genome. Results: Whole-genome bisulfite sequencing performed on different developmental stages reveals a high fraction of methylated cytosines with a strong preference for CpG sites. The methylation pattern is highly similar among samples and selectively targets TEs rather than genes. A marked trend toward hypomethylation is observed for TEs located within a 1 kb distance from expressed genes, rather than segregated in TE-rich regions of the genome. Approximately 300 hypomethylated or unmethylated TEs are transcriptionally active, with higher expression levels in free-living mycelium compared to fruitbody. Indeed, multiple TE-enriched, copy number variant regions bearing a significant fraction of hypomethylated and expressed TEs are found almost exclusively in free-living mycelium. A reduction of DNA methylation, restricted to non-CpG sites and accompanied by an increase in TE expression, is observed upon treatment of free-living mycelia with 5-azacytidine. Conclusions: Evidence derived from analysis of the T. melanosporum methylome indicates that a non-exhaustive, partly reversible, methylation process operates in truffles. This allows for the existence of hypomethylated, transcriptionally active TEs that are associated with copy number variant regions of the genome. Non-exhaustive TE methylation may reflect a role of active TEs in promoting genome plasticity and the ability to adapt to sudden environmental changes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available