4.5 Article

Physiological response of rice (Oryza sativa L.) genotypes to elevated nitrogen applied under field conditions

Journal

PLANT SIGNALING & BEHAVIOR
Volume 9, Issue 7, Pages -

Publisher

TAYLOR & FRANCIS INC
DOI: 10.4161/psb.29015

Keywords

Growth dynamics; nitrogen application; nitrogen use efficiency; plant productivity; rice genotypes

Ask authors/readers for more resources

Field experiment was conducted at G.B.P.U.A.T. Pantnagar, Uttarakhand, India in rainy season of 2008 and 2009 to study the impacts of increased nitrogen doses on growth dynamics, biomass partitioning, chaffy grain and nitrogen use efficiency in 4 rice genotypes viz., Vasumati, Tulsi, Kasturi and Krishna Hamsa. Four doses (N-0, N-50, N-100 and N-200 kg N ha-1) of nitrogen in the form of urea were applied in 3 split. Increased trend in growth dynamics during active tillering and flowering stage, and biomass partitioning at the time of active tillering and flowering stage was observed with respect to nitrogen doses. Chaffy grain number and chaffy grain weight per 5 panicles was significantly increased with enhancing nitrogen doses and was highest for Vasumati. Nitrogen use efficiency (NUE) was increased up to N-100 kg N ha-1 and it was declined with rising nitrogen doses (N-200 kg N ha-1). The highest values for NU E was achieved by rice genotype Krishna Hamsa whereas lowest by Vasumati. In addition to this, a significant correlation between nitrogen doses and growth dynamics, biomass partitioning and chaffy grain was observed. These findings suggest that growth dynamics, biomass partitioning, chaffy grain could be enhanced by the input of high rate of nitrogen fertilizer but not nitrogen use efficiency. Therefore, this study is useful to screen most N efficient genotypes which can be strongly suggested to rice growers to enhance crop yield irrespective of use of high dose of N fertilizers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available