4.7 Article

Identification of arginine- and lysine-methylation in the proteome of Saccharomyces cerevisiae and its functional implications

Journal

BMC GENOMICS
Volume 11, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1471-2164-11-92

Keywords

-

Funding

  1. Australian Postgraduate Awards
  2. Swiss Federal Government through the Federal Office of Education and Science
  3. University of New South Wales Faculty Research Grant
  4. University of New South Wales Goldstar Scheme
  5. NSW State Government Science Leveraging Fund

Ask authors/readers for more resources

Background: The methylation of eukaryotic proteins has been proposed to be widespread, but this has not been conclusively shown to date. In this study, we examined 36,854 previously generated peptide mass spectra from 2,607 Saccharomyces cerevisiae proteins for the presence of arginine and lysine methylation. This was done using the FindMod tool and 5 filters that took advantage of the high number of replicate analysis per protein and the presence of overlapping peptides. Results: A total of 83 high-confidence lysine and arginine methylation sites were found in 66 proteins. Motif analysis revealed many methylated sites were associated with MK, RGG/RXG/RGX or WXXXR motifs. Functionally, methylated proteins were significantly enriched for protein translation, ribosomal biogenesis and assembly and organellar organisation and were predominantly found in the cytoplasm and ribosome. Intriguingly, methylated proteins were seen to have significantly longer half-life than proteins for which no methylation was found. Some 43% of methylated lysine sites were predicted to be amenable to ubiquitination, suggesting methyl-lysine might block the action of ubiquitin ligase. Conclusions: This study suggests protein methylation to be quite widespread, albeit associated with specific functions. Large-scale tandem mass spectroscopy analyses will help to further confirm the modifications reported here.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available