4.7 Article

Profiling of infection specific mRNA transcripts of the European seabass Dicentrarchus labrax

Journal

BMC GENOMICS
Volume 10, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1471-2164-10-157

Keywords

-

Funding

  1. European Commission [501984]

Ask authors/readers for more resources

Background: The European seabass (Dicentrarchus labrax), one of the most extensively cultured species in European aquaculture productions, is, along with the gilthead sea bream (Sparus aurata), a prospective model species for the Perciformes which includes several other commercially important species. Massive mortalities may be caused by bacterial or viral infections in intensive aquaculture production. Revealing transcripts involved in immune response and studying their relative expression enhances the understanding of the immune response mechanism and consequently also the creation of vaccines. The analysis of expressed sequence tags (EST) is an efficient and easy approach for gene discovery, comparative genomics and for examining gene expression in specific tissues in a qualitative and quantitative way. Results: Here we describe the construction, analysis and comparison of a total of ten cDNA libraries, six from different tissues infected with V. anguillarum (liver, spleen, head kidney, gill, peritoneal exudates and intestine) and four cDNA libraries from different tissues infected with Nodavirus (liver, spleen, head kidney and brain). In total 9605 sequences representing 3075 (32%) unique sequences (set of sequences obtained after clustering) were obtained and analysed. Among the sequences several immune-related proteins were identified for the first time in the order of Perciformes as well as in Teleostei. Conclusion: The present study provides new information to the Gene Index of seabass. It gives a unigene set that will make a significant contribution to functional genomic studies and to studies of differential gene expression in relation to the immune system. In addition some of the potentially interesting genes identified by in silico analysis and confirmed by real-time PCR are putative biomarkers for bacterial and viral infections in fish.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available