4.6 Article

Elevation dependency of mountain snow depth

Journal

CRYOSPHERE
Volume 8, Issue 6, Pages 2381-2394

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/tc-8-2381-2014

Keywords

-

Funding

  1. Swiss National Foundation
  2. Amt fur Wald
  3. Naturgefahren Graubunden

Ask authors/readers for more resources

Elevation strongly affects quantity and distribution patterns of precipitation and snow. Positive elevation gradients were identified by many studies, usually based on data from sparse precipitation stations or snow depth measurements. We present a systematic evaluation of the elevation snow depth relationship. We analyse areal snow depth data obtained by remote sensing for seven mountain sites near to the time of the maximum seasonal snow accumulation. Snow depths were averaged to 100 m elevation bands and then related to their respective elevation level. The assessment was performed at three scales: (i) the complete data sets (10 km scale), (ii) sub-catchments (km scale) and (iii) slope transects (100 m scale). We show that most elevation-snow depth curves at all scales are characterised through a single shape. Mean snow depths increase with elevation up to a certain level where they have a distinct peak followed by a decrease at the highest elevations. We explain this typical shape with a generally positive elevation gradient of snow fall that is modified by the interaction of snow cover and topography. These processes are preferential deposition of precipitation and redistribution of snow by wind, sloughing and avalanching. Furthermore, we show that the elevation level of the peak of mean snow depth correlates with the dominant elevation level of rocks (if present).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available